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Anguilliform body dynamics: modelling the interaction
between muscle activation and body curvature

GRAHAM BOWTELL anop THELMA L. WILLIAMS

Mathematics Department, City University, Northampton Square, London EC1V OHB, U.K. and Physiology Department,
St George’s Hospital Medical School, University of London, London SW17 ORE, U.K.

SUMMARY

A simple two-dimensional rod and pivot model is proposed for the mechanical structure of the lamprey,
each pivot being controlled by a muscle segment attached via perpendicular extensions to the two rods.
The elastic and viscous properties of the body tissues (including muscle) are described as linear functions
of the relative displacement and angular velocity of the rods at each pivot. The contractile properties of
the muscle are introduced as time-dependent forcing torques at the pivots, which are generated by a
travelling wave of activation. The angles between the rods at each pivot are used as adapted coordinates,
and the equations of motion are linearized by assuming low curvature dynamics, corresponding to slow
swimming speeds. Investigation of these equations with varying viscous and elastic parameters leads to a
reconstruction of a lamprey viewed in motion on a smooth flat surface out of water. The most striking
feature is of an apparently standing wave motion, which is indeed observed in the real animal but which
on careful examination in the model corresponds to a travelling wave of varying amplitude.

1. INTRODUCTION

Anguilliform (eel-like) fish swim by passing a wave of
lateral curvature from head to tail, thereby developing
a thrust that pushes the animal forward (Breder 1926;
Gray 1933). The patterns of muscle activation which
give rise to this movement are generated by the central
nervous system (for references see Grillner et al. (1987)).
During steady-state swimming the pattern consists of
bursts of ventral root activity which alternate between
the left and right sides at each segmental level, with a
rostral-caudal delay between neighbouring segments
along each side. Thus the pattern is that of a travelling
wave of muscle activation. Faster swimming is ac-
complished by a decrease in the duration of the activity
cycle, accompanied by a proportional change in the
various time delays within the pattern. This propor-
tional change results in an intersegmental delay that
is a constant fraction of the cycle, for all swimming
speeds. In the lamprey it has a value of approximately
19, of a cycle per segment (Wallen & Williams 1984).
The lamprey consists of approximately 100 segments,
so at any swimming speed the ‘wave length’ of the
activation pattern is approximately one body length.
The arrangement of muscle fibres and connective
tissue elements within the body of a fish is such that
activation of the contractile filaments within one
myosegment (on the left or right side) produces tension
tending to develop a local curvature concave to the
active side (Gray 1933; Alexander 1969; Wainwright
1983). Development of this curvature is opposed by the
inertial, viscous and elastic properties of the spinal cord
or notochord, the skin, the muscle itself, and the
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surrounding water. The interaction of all these
elements in response to the travelling wave of muscle
activation results in the observed time-dependent
variations in the shape of the animal, namely, the
mechanical wave of curvature travelling from head to
tail.

The speed of travel of the mechanical wave is slower
than that of the wave of activation (Grillner & Kashin
1976), so that the relative timing of muscle activation
and local curvature changes along the body length
(Williams et al. 1989). In the hope of gaining insight
into the mechanisms responsible for the observed
relative timing, we have investigated the behaviour of
a two-dimensional model of the body of an anguilliform
fish, containing both elastic and viscous elements,
and subjected to a time-varying longitudinal force
generated by muscle activity within each segment. We
have not here considered the effects of a surrounding
fluid (Carling & Williams 1991); thus any predicted
motion is that of a free animal on a smooth horizontal
surface. A preliminary report of these results has
appeared (Williams & Bowtell 1990).

2. MECHANICAL MODEL

The body of the animal is assumed to consist of a
series of tissue segments attached via perpendicular
extensions to a set of smoothly linked rods, constrained
to lie in a horizontal plane (figure 1). Because the mass
of the animal is symmetric about the axial midline, we
assume that all the mass is distributed along this line.
The swimming muscles in the real animal are
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Figure 1. Representation of anguilliform body. N pivoted
rods of length / with a mass m at each pivot and at both ends
are controlled by muscle segments. The fixed ends of the (s)th
muscle unit are a distance w from the (s)th and (s+ 1)th rod.
The (s)th rod makes an angle ¢, with a line drawn through
the (s)th pivot, parallel to the x-axis.

Figure 2. The (s)th tissue segment M, consists of a spring
(stiffness u,), a dashpot (damping coefficient y,) and a power
source producing contractile tension F(¢), taken as positive in
the direction indicated by arrows. Total thrust developed by
the unit is given by the sum of the contributions of the three
parallel components, and is positive in the direction shown
by arrows along AB.

symmetric about the midline, and activation of muscle
on the left and right sides of the body at a given
segment will produce turning couples of opposite sign
at the corresponding pivot. We have therefore simpli-
fied the muscle component in the model to a single-
sided element which is capable of producing both
positive and negative contractile force (corresponding
to the algebraic sum of the force produced by muscle
on both sides of the midline). Each segment of the
animal is considered to contain a stiffness element
modelled by a linear spring, a damping element
modelled by a linear velocity-dependent dashpot, and
a power unit capable of producing time-varying
tension and thrust (figure 2). The elastic and damping
elements model the contributions to stiffness and
viscosity of all the body tissues, including the muscle
itself as well as the skin, connective tissue, and spinal
column or notochord.

With reference to figure 2 and applying simple
geometry

AB = [cos (¢,/2) — 2wsin (¢,/2). (1)
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The total thrust tending to increase the length AB is
given by

Gs = _/us(xs/l) _73<x3/1> _F;(l)> (2>

where u, and v, are respectively the stiffness and
damping coeflicients of the (s)th segment, F({) the
force generated within the contractile elements of the
muscle in that segment and x,// the extension per unit
length which, from the expression for AB, is given by

%/l = {[cos ($s/2) = 1] =2 (w/1) sin (¢,/2)}. (3)

For a fuller understanding of the signs in equation (2)
it is worth noting that ¢, and x, are of opposite signs
except when ¢, = x, = 0.

3. EQUATIONS OF MOTION

To derive the equations of motion we adopt a
standard Lagrangian approach for a non-conservative
system, using a kinetic energy term and generalized
forces (see, for example, Goldstein (1950) or Wood-
house (1987)). We use the adapted coordinates
0,,0,,...,0y, representing the angles made by each of
the N rods with the positive x-axis, and the position
(%9, yo) of the head (see figure 1). The positions of the
masses at each of the pivots and the tail point are given,
for equal segments of length /, by:

k k
(X Yie) = (%0, Yo) +Z(E cosf;, 2 sin 6i>>

i=1 i=1
k=1,...,N, (4)
and the velocity v, of the kth mass by

k . ’c .
v = (%9, 90) +1 (— > 0,sinf,, X ﬁicosﬁi),

i=1 i=1
k=1,...,N. (5)
The total kinetic energy K for the N+ 1 masses m is
given by
m N
K= 5((9&3-}-?%) + X v,c'vk). (6)
k=17

After substitution for v,

N
K= §<(N+ 1) (#2442 + 3 (N—i+1) 262
=1

k

|
-

N
+2 2

k=2 i=1

(N—k+1)6,0,cos (6,—6
ik i k

.
)

N
—2%, % (N—i+1)6,sin6,
i=1

N
+21y'OE(N—i+1)0icost9i>. (7)

i=1

The equations of motion with respect to the angular
coordinates are given by

d 0K\ oK _ G
di\od,) oo, %
where G, _is the generalized force corresponding to the
generalized coordinate 6,.

s=1,..., N, (8)
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Combining (7) and (8)

sz((N—s+l) z b, cos (6,—6,)

i=1

N+1

+ 2 (

1=s+1

N—i+1)6,cos (6,—6,)

N+1

+ X (

i=s+1

N—i+1)6%sin (6,—6,)

S

—(N=s+1)Y

62 sin (@-—03))

+ml(N—s+1) (—%,sin 0, + g, cos 0,)
=Gy, s=1,...,N. 9)

The variable 6, occurring in the above expression is
introduced to add symmetry to the expression and does
not correspond to any physical quantity : its coefficient
is always zero.

Because zero work is done by the system under small
variations of the head position coordinates x, and y,,
and because there are no external forces on the system,
the corresponding generalized forces are zero.

The equations of motion thus lead to the following
expressions for the head position:

IN [
Xog = —é"—mz?l( “l+1>COS€ (10)
— LS (N—i+1)sing, 11)
bo=— 347 S (V=i+1)sin (

These equations are derived under the assumptions
that initially all the coordinates and their first
derivatives are zero, corresponding physically to a
stationary straight creature lying along the positive x-
axis with its head at the origin. As expected, since there
are no external forces on the system, these equations
lead to the centre of mass being fixed at the initial
midpoint of the body, namely (N//2,0).

4. GENERALIZED FORCES

The generalized forces corresponding to the N+2
coordinates are obtained in the usual manner by
considering the work done by the system under small
independent changes of each of the coordinates in turn.
As noted above the generalized forces corresponding to
the head coordinates x, and y, are zero. To calculate
the other forces, namely Ggs, we need to consider the
geometry of the system and in particular that of a
typical muscle element. With the exception of 8, and
0y a small change of A, in ¢, only is attained by a
change in the muscle segments M,_; and M. This is
clear from observing that the angle ¢, at the (s)th
pivot, namely ¢,=6,,,—0, s=1,...,N—1, is
decreased by A, and the correspondmg angle ¢s . at
the (s—1)th plvot is increased by A, . No other pivotal
angles are affected by this change in ;. Thus for
positive A, the unit in the (s)th segment is extended
and in the (s—— 1)th segment shortened.
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Thus the total work done, to first order in A, , by the
resultant thrusts G, and G,_, in the (s)th and (s— 1)th
segments due to the change A, in 6, is given by

/2 [Gysin (¢,/2) = G,y sin <¢s—1/2)]
tuw[Gcos (§,/2) =G,y cos (§,1/2) 1A, (12)
The generallzed force Gy, is therefore glven by the
coefficient of A, in the above expression and if we set
the non-phy51cal constants G, and G, to zero it is valid
fors=1,..., N
The forcing function £(f) in equation (2) represents
the timecourse of activation of the contractile protein
filaments. EMG recordings from swimming animals
show that each burst of ventral root activity occupies
approximately 409, of a cycle, with strict left-right
alternation (Wallen & Williams 1984). Because activity
on the contralateral side is modelled as negative values,
this pattern can be approximated by a sine wave, or by
a square wave with a mean value of zero. We have also
allowed attenuation at the rostral and caudal ends.
The following forcing functions have been investigated.

Square wave: the function

E(l) = Flkx—wl),

where x =

with
Fly)= 0 0<y<0.1
I 01<y<05

= 0 05<y<06
=—1 0b6<y<l1
extended periodically beyond [0, 1].
Sine wave:
. (s—1)
E(t) = sin (kx—wt), where x= (N=2)
s=1,...,N—1. (14)

Attenuated sine wave:

_ £\ _ =1
E(1) —exp<x<1_x))51n (kx—wt), x= (N=2)’
s=2,...,N=2,

=0 s=1,N-1. (15)

5. LINEARIZATION

We now make the obvious linearization of equation
(9) assuming 6, 6, and ¢, are small. With the extension
per unit length now given by —w ¢,// the generalized
forces are approximated by G, = w(G,—G,_,) where
G, is given by equations (2) and (3) which in linearized
form become
Gs=/u’s(w/1) ¢s+73(w/[> ¢$_F;(t)3 N-1.

(16)
The linearized equations of motion for the angular
coordinates are given by

s=1,..

D

N+1
G,,S=sz{(N——s+l)E€+ S (N—i+1)6,
i=1 1=s+1
(N—s+1) ¥ .
sy El(N z+1)0i} s=1,...,N, (17)
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and the position of the head by:

—]
and y,=——

—i+1)0, 1
Fr S (=i, (18)

% =0
Introducing two other zero dummy variables G_; and
Gy, the following manipulations lead to a set of
equations for ¢, in terms of lower derivative terms;
with the G, terms given by equation (17)

5 1 R
G, —G =ml2{2 f——— % (N—i+1 @.},
% Osea i=1 (N+ 1) =1 ( )

s=1,...,N, (19)

(Gy,—G,,, )= (G —G,) =mPl,, s=1,...,N. (20)

o)

Finally substituting for G, from equation (16) leads to

mlP0, = —(G,,,—3G,+3G,_,—G, )w, s=1,...,N.
(21)

It is more natural to specify the angular motion of the
system by {0,,0,,...,py_q} as the spring and dashpot
forces in each segment depend only on the ¢ variables,
i.e. the amount of bending at each segment.

Thus from equation (21)

w

q;s = W {Gs+2 - 4'Gs+1 + 6Gs - 4Gs—1 + Gs—2}>

s=1,...,N—1. (22)

6. NUMERICAL INVESTIGATION

The set of linearized equations was investigated
numerically to predict actual observed motions. This
simple linear problem lends itself to numerical
solution using a fourth order Runge Kutta routine. To
observe the movements induced by the forcing term a
simple time lapse graphical output was constructed.

Values were chosen for £ and o in the forcing
function £ so as to produce a wave of muscle activation
with a wave length of approximately one body length
and a frequency of two cycles per second, a typical
swimming frequency for a lamprey. The physical
constants of mass and length were chosen to make the
total length and total mass of the body equal to unity.
Thus m =1/(N+1) and /= 1/N. The half-width w
has been chosen by observing that the width of a
typical lamprey is about 4 9, of its length, thus w is set
equal to 0.02. In preliminary experiments, results were
qualitatively similar for N greater than 10. So N was
set equal to 20.

A more difficult task was the selection of the
parameters of stiffness and damping, as these are not
easily estimated from knowledge of the intact animal.
To choose a reasonable range of values, we have
considered the hypothetical behaviour of a single
inactive muscle segment after being mechanically
displaced by an external force. So for the single
segment in figure 2, setting 6, and F, equal to zero
corresponds to a single unforced muscle segment with
one arm fixed, and is used to represent an inert tissue
element at either end of the animal. We then
investigated the behaviour of such a model in response
to an initial displacement from the equilibrium
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position, and have introduced a new set of parameters
(e, T'). These parameters measure respectively: (i) the
degree of damping (namely underdamped, over-
damped or critically damped) and (i) the response
time for a single inactive tissue segment to return to its
position of equilibrium when mechanically displaced
by an external force. We have used a domain for each
parameter which spans two orders of magnitude.

Dropping the suffices from the symbols of figure 2,
the equation of motion for small displacements of this
single element is given by:

.owy s w?

Setting o = 4ul®m/w*y?, equation (23) is critically
damped if « =1, underdamped if @ > 1 and over-
damped if @ < 1. It seemed reasonable to require that
a should not be greater than one, as this would give
rise to oscillatory behaviour in response to a small
displacement of the end segments. Thus {0.01,0.1, 1}
was chosen as the domain for a. Using equation (23),
the parameter 7" was defined as the time required for
the single segment to return to ten percent of its
original displacement. A range of values from 10 ms to
1 s seemed reasonable, so the parameter space for 7" (in
seconds) was also chosen to be {0.01,0.1, 1}. For given
values of 7" and « the corresponding values of the
stiffness and damping parameters are easily calculated,
these parameters taken to be constant for each segment
of the body.

7. RESULTS

Qualitatively there was very little difference in the
movement profiles obtained from the three different
forcing functions, at any point in the parameter space.
The results illustrated in figure 3 were obtained with
the forcing function given by equation (15).

For the (T, a) parameters equal to (1,0.1), (1,1) or
(0.1, 1) the transient parts of the solutions were slow to
die away (more than two seconds) and therefore were
not considered further, as such a lengthy transient
seems unrealistic. Over the rest of the parameter space,
the observed movement profile was that of a travelling
wave with an envelope which possesses two or three
nodal points. The superposition of such profiles over
one cycle are shown in figure 3a, ¢, ¢. For the (7, )
pair (1,0.01) the attenuation of the travelling wave
profile was slight (figure 3¢), so that the overall
impression was that of a travelling wave, although the
attenuation near the tail made it unlike the pattern
seen in the intact swimming lamprey (figure 3f). For
all other pairs in the parameter space, the attenuation
of the travelling wave profile into two or three nodal
points was so severe as to give the initial impression of
a standing wave (figure 3a, ¢). On closer inspection,
however, it can be seen that a wave of curvature travels
to and through the nodes.

Having failed to obtain results that mimicked intact
swimming lampreys, we decided to observe the
behaviour of intact lampreys out of water, on a smooth
surface. Superimposed tracings from single video
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®)

(d)

)

Figure 3. Comparison of calculated profiles (a,c¢,¢) with those of intact lamprey (b,d,f). Parameters (a, T') for
calculated profiles were: (a) (1.0,0.01), (¢) (0.1,0.1) and (¢) (0.01,1.0); () and (d) are traces from single frames of
a video recording of an intact lamprey on a wet bench; (f) consists of superimposed traces from single frames of a
cine film of an intact lamprey swimming in a swimmill (Williams et al. 1989).

frames are shown in figure 35, d for two different
movement sequences, for comparison with the be-
haviour of the model. As with the model, in any one
movement sequence, the profile resembled either a
standing wave with two nodes, or one with three. If,
however, a thick enough layer of water was placed on
the bench, the movement took on the appearance of a
travelling wave, and the lamprey made forward (albeit
slow) progress.

8. DISCUSSION

The similarity between the behaviour of the model
over a wide parameter space and the behaviour of an
intact lamprey on a smooth surface indicates that this
simple linear model for the mechanical structure of the
lamprey and the interaction between the muscle
filaments and the surrounding tissues may be sufficient
for further investigations of the control of movement in
this animal. When we first began to model the lamprey
body as a viscoelastic structure acted upon by a forcing
function, we anticipated that the effects of the
surrounding water on the movement of the animal
might be incorporated within the lumped parameters
of elasticity and viscosity, # and y (Williams 1991).
Our results have made it clear, however, that even a
qualitative understanding of the relative timing of
activation and movement in the intact swimming
animal will require fluid dynamical analysis. Such an
analysis is now being undertaken (Carling & Williams
1991).

Phil. Trans. R. Soc. Lond. B (1991)

Apart from investigating the effect of the nonlinear
terms in the above model there is also one important
physical property of the animal that has yet to be
considered. In the real animal the force generated by
the contractile elements is dependent upon the muscle
length and its rate of change with respect to time. This
can be included in the model by extending the
dependence of F, to ¢, and ¢,. In addition, in the real
animal there is sensory feedback to the neurally
generated pattern which is dependent upon the
timecourse of local curvature. This may be included in
the model as a local influence on the activation
frequency w.

Although the musculature of the animal consists of a
discrete number of segments a continuum limit of
equation (22) would be of general value for the further
investigation and approximate analytic solution of the
above linearized system. Such studies are in progress.
The inclusion of nonlinear terms and the other
refinements mentioned above are expected to make the
model more realistic for incorporation within the fluid
dynamics of the swimming lamprey.

We are grateful to John Carling for helpful comments on the
manuscript. This work was supported by the SERC. A
preliminary report has appeared (Williams & Bowtell 1990).
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